Induction of functional platelets from mouse and human fibroblasts by p45NF-E2/Maf.
نویسندگان
چکیده
Determinant factors leading from stem cells to megakaryocytes (MKs) and subsequently platelets have yet to be identified. We now report that a combination of nuclear factor erythroid-derived 2 p45 unit (p45NF-E2), Maf G, and Maf K can convert mouse fibroblast 3T3 cells and adult human dermal fibroblasts into MKs. To screen MK-inducing factors, gene expressions were compared between 3T3 cells that do not differentiate into MKs and 3T3-L1 cells known to differentiate into MKs. 3T3 cells transfected with candidate factors were cultured in a defined MK lineage induction medium. Among the tested factors, transfection with p45NF-E2/MafG/MafK lead to the highest frequency of CD41-positive cells. Adult human dermal fibroblasts transfected with these genes were cultured in MK lineage induction medium. Cultured cells had megakaryocytic features, including surface markers, ploidy, and morphology. More than 90% of MK-sized cells expressed CD41, designated induced MK (iMK). Infusion of these iMK cells into immunodeficient mice led to a time-dependent appearance of CD41-positive, platelet-sized particles. Blood samples from iMK-infused into thrombocytopenic immunodeficient mice were perfused on a collagen-coated chip, and human CD41-positive platelets were incorporated into thrombi on the chip, demonstrating their functionality. These findings demonstrate that a combination of p45NF-E2, Maf G, and Maf K is a key determinant of both megakaryopoiesis and thrombopoiesis.
منابع مشابه
OP9 Bone Marrow Stroma Cells Differentiate into Megakaryocytes and Platelets
Platelets are essential for hemostatic plug formation and thrombosis. The mechanisms of megakaryocyte (MK) differentiation and subsequent platelet production from stem cells remain only partially understood. The manufacture of megakaryocytes (MKs) and platelets from cell sources including hematopoietic stem cells and pluripotent stem cells have been highlighted for studying the platelet product...
متن کاملp45NF-E2 represses Gcm1 in trophoblast cells to regulate syncytium formation, placental vascularization and embryonic growth.
Absence of the leucine zipper transcription factor p45NF-E2 results in thrombocytopenia, impaired placental vascularization and intrauterine growth restriction (IUGR) in mice. The mechanism underlying the p45NF-E2-dependent placental defect and IUGR remains unknown. Here, we show that the placental defect and IUGR of p45NF-E2 (Nfe2) null mouse embryos is unrelated to thrombocytopenia, establish...
متن کاملReduced oxidative-stress response in red blood cells from p45NFE2-deficient mice.
p45NF-E2 is a member of the cap 'n' collar (CNC)-basic leucine zipper family of transcriptional activators that is expressed at high levels in various types of blood cells. Mice deficient in p45NF-E2 that were generated by gene targeting have high mortality from bleeding resulting from severe thrombocytopenia. Surviving p45nf-e2(-/-) adults have mild anemia characterized by hypochromic red bloo...
متن کاملRED CELLS Reduced oxidative-stress response in red blood cells from p45NFE2-deficient mice
p45NF-E2 is a member of the cap ‘n’ collar (CNC)-basic leucine zipper family of transcriptional activators that is expressed at high levels in various types of blood cells. Mice deficient in p45NF-E2 that were generated by gene targeting have high mortality from bleeding resulting from severe thrombocytopenia. Surviving p45nf-e22/2 adults have mild anemia characterized by hypochromic red blood ...
متن کاملInduction of apoptosis in human tumor cell lines by platelets
Introduction: It has been reported that platelets can eradicate tumor cells in vitro, although the mechanism of this effect has not been determined. The effect of platelets on the induction of apoptosis in tumor cells is largely unknown. Materials and methods: To investigate this effect, two human hematologic cell lines, K562 and Daudi, were independently faced with unstimulated and thromb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 120 18 شماره
صفحات -
تاریخ انتشار 2012